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Abstract 
 

We propose an inference prevention agent as a tool that enables each of the databases in a 
distributed system to keep track of probabilistic dependencies with other databases and 
then use that information to help preserve the confidentiality of sensitive data. This is 
accomplished  with minimal sacrifice of the performance and survivability gains that are 
associated with distributed database systems. 
 
I . INTRODUCTION 

 
For many applications, distributed database systems are generally understood to provide 
greater performance and survivability than their centralized counterparts (e.g., [OV99]).  
The particular applications of concern in this paper contain data of two classes. The first 
class, is the public data. This is data that all users may see. The second class, is the 
sensitive data, that is restricted to only certain users. As in a centralized database system, 
it is often possible for a user to infer sensitive information from publicly available 
information by exploiting probability dependency relationships. We refer to a 
compromise of the confidentiality of sensitive data in this way [De80][Hi97][T98] as 
“database inference.”  Distributed databases present challenges to inference prevention 
methods that are not present in centralized schemes [PCS00][CM02]. This is because 
each database in a distributed system does not contain all the data that is necessary to 
learn the gamut of the possible inference possibilities.  Therefore, in order to successfully 
prevent inference, or to minimize inference, each database must take into account how its 
data relates to data stored in the other databases in the system.   
 
We propose an inference prevention agent as a tool that enables each of the databases in a 
distributed system to keep track of probabilistic dependencies with other databases and 
then use that information to help preserve the confidentiality of sensitive data. This is 
accomplished  with minimal sacrifice of the performance and survivability gains that are 
associated with distributed database systems. 
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I I . BACKGROUND ON DISTRIBUTED DATABASE INFERENCE 
 
A. Database Inference 
Information to be protected in a database may be spread among many attribute values. In 
this paper, for the sake of simplicity, we consider the case in which sensitive data are 
associated with only one particular attribute.  
 
Example:  (We summarize the example from [CM02]). In a specific medical database the 
sensitive information that we are trying to protect from public disclosure, is the report of 
a patient’s AIDS diagnoses. We use the terms High database and Low database to 
indicate, respectively, the portions of a database viewed by a database manager (the High 
user) and a generic (Low) user. A High user has access to both the public and the 
sensitive data stored in the database, whereas a Low user only has access to the public 
data.  
 
Our medical database usually consists of attributes that are related to the patient's 
background (e.g., age, address) and those that are related to the medical diagnosis. We 
are interested in studying the probabilistic influence of public data upon the sensitive 
medical diagnosis. (See [CM00][D90] for the treatment of background information.) 
Table 1 is the medical database for AIDS diagnosis which contains 20 data records (i.e., 
patients), which are uniquely identified by their key, and four attributes (excluding the 
key) (i.e., “hepatitis” , “depression” , “AIDS”, “ transfusion”). Each attribute has two 
values, with a ‘ y’  indicating the occurrence of the (diagnosis) result and an ‘n’  indicating 
otherwise. Table 1 shows the High view (denoted here as DH) in our discussion. Note that 
having one disease (e.g., “AIDS”) often causes the occurrence of another physical 
disorder (e.g., “mental depression”). Consequently, knowing the diagnosis of a physical 
disorder may lead to the inference of the sensitive information (i.e., AIDS) about a 
patient. Thus, protecting information about one disease may require the protection of 
other probabilistically related records. In this paper, as in [CM02], a Bayesian net 
(network) representation is used to describe the probabilistic relationship. A 
corresponding Bayesian net representation is given in Figure 1 (see 
[He96][SL90][SGS93] for details on how to construct a Bayesian net), which shows that 
“AIDS” may affect the consequence of both “hepatitis”  and “mental depression”  and also 
shows that a cause of “AIDS” is a blood transfusion.  
 
Table 2 shows the database that is considered for release to the public---the Low database 
(denoted here as DL). In Table 1 and 2, a patient is identified by its key.  The threat we 
are concerned with is that of Low inferring sensitive relations about the AIDS diagnosis. 
 
Table 1: DH sample medical records (1st database) H: hepatitis; D: depression; A: AIDS; T: transfusion 

Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
H N Y Y Y N N Y Y Y N N Y N Y N Y N Y N Y 
D N Y Y Y Y N N N Y N Y N N Y Y N Y Y Y N 
A N N Y Y N N N Y Y N Y N N Y N N N Y N N 
T N N Y N N N N Y N N Y N N N N N N Y N Y 
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Figure 1: Bayesian Net for Sample Medical Records 

 
 
In DL the dashes represent data that is considered sensitive and, thus, is not released. Note 
that Table 2 is only in a tentative form for release to the public.  One must first consider 
the inferences that may be obtained. If these inferences leak sensitive information (who 
has AIDS), then less information should be considered as publicly releasable. A target 
attribute T is an attribute that has dashes in it (from Low's viewpoint). Thus, T represents 
sensitive information. We wish to lessen any inference that a Low user may attempt to 
draw about the target node, which is the representation of the target attribute in the 
Bayesian net (sensitive information). Since data are not completely revealed, the 
corresponding Bayesian net structure (Figure 2) for DL differs from that of DH. The 
challenge for a Low user who is attempting to discern sensitive information is to restore 
the missing information from Table 2. Note that Table 2 still contains the “AIDS”  
attribute, even though the values are all missing. This is because we take the paranoid 
view that the Low user knows what the sensitive attribute is.  
 
Table 2: DL sample medical records as seen by Low user H: hepatitis; D: depression; A: 
AIDS; T: transfusion 
Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

H N Y Y Y N N Y Y Y N N Y N Y N Y N Y N Y 
D N Y Y Y Y N N N Y N Y N N Y Y N Y Y Y N 
A - - - - - - - - - - - - - - - - - - - - 
T N N Y N N N N Y N N Y N N N N N N Y N Y 
 
 

transfusion AIDS 

hepatitis depression 



 4 

 
Figure 2: Bayesian Net as Constructed by Low User 

 
 
We continue our paranoia by assuming that the Low user obtains the prior knowledge 
(say, from previous studies) about the dependency relationship between AIDS and the 
three attributes “mental depression,”  “hepatitis”  and “ transfusion.”  (The dependency 
relationship is described in Figure 1.)  With this dependency knowledge, together with 
data from the Low database, the Low user may be able to restore the hidden sensitive 
data. For instance, one may assign a set of values to the hidden attributes that maximizes 
the sample probability of the entire database [CM00]. In fact, the technique of probability 
maximization results in having the restored values be equal to the values of “ transfusion.”  
Such a restored Low database is shown in Table 3.  
 
Table 3: sample medical records as restored by Low user H: hepatitis; D: depression; A: 
AIDS; T: transfusion 
Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

H N Y Y Y N N Y Y Y N N Y N Y N Y N Y N Y 
D N Y Y Y Y N N N Y N Y N N Y Y N Y Y Y N 
A N N Y N N N N Y N N Y N N N N N N Y N Y 
T N N Y N N N N Y N N Y N N N N N N Y N Y 
 
Compared with the original values in Table 1, the restored values of Table 3 differ in just 
4 places (as shown in the boldface italicized font). This 0.8 chance to make a correct 
guess is unacceptable. The threat of potential restoration suggests the inadequacy of just 
hiding the AIDS diagnoses. Therefore, we shall mitigate the inference by not releasing   
certain nonsensitive(public) information that can lead to probabilistic inferences about 
the sensitive information [CM00].   

transfusion 

hepatitis depression 
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B. Inference in Distr ibuted Databases  
Current information downgrading techniques assume that data come from a single source. 
However, in the real world there may be several databases [PCS00] in the same context. 
These databases may have impact upon the sensitive information of the original 
downgraded database. The inference problem must take into account the impact from 
different databases. We propose an agent-based tool to help with this inference problem. 
Note that the multiple databases may have exactly the same structure or overlapping 
contents.  
 
Given two databases containing information on the same objects (which can be uniquely 
identified and joined if the database is in the form of a relational table), the problem that 
we try to solve is the inference of sensitive data in one database from public data from a 
different database. The possible interactions for two databases (in the form of relational 
tables, with schemes R1(a1, a2, …, ak), and R2(b1, b2, …, bl)) are the following:  
 

1. R2 augments R1 with data records.  
2. R2 augments R1 with different attributes.  
3. R2 augments and changes both records and attributes of R1.  

 
The 1st and 2nd types of interactions respectively correspond to horizontal and vertical 
combination of databases (in the form of a relational table). What we consider here is 
when two databases are in different contexts (or, applications), but have overlapped 
attributes (i.e., the 3rd type of interaction). Also, we assume data records of the two 
databases come from the same sample population, but attribute values of some objects 
may be unknown. Data exchange may involve metarules or direct data records. Here, the 
form of direct data records will be used in our discussion. Data transferred from the 
second database may or may not have direct impact on the sensitive information of the 
first database. The High user will integrate some, but not all, publicly released 
information from different databases that may cause the disclosure of sensitive data. 
Combinations of all data may render inference analysis an impractical task due to the 
huge volumes of data. This is why we propose a Bayesian analysis. We shall analyze the 
impact based on network dependency properties ([SGS93]), and our practical data 
sanitization policies, with the following databases.  
 
Consider Table 4, where data shows the diagnosis of nonHodgkin lymphomas (NHL) 
disease. The database manager of the NHL table may observe that a NHL patient is 
highly likely to also be an AIDS patient. Thus, data in Table 4 cannot be released if the 
database manager of the NHL database also agrees to the sanitization/downgrading 
principle that AIDS data must be secured. Based upon a Bayesian net model of Table 5, 
data are likely to imply that low thyroid function causes mental depression, which in turn 
causes high blood pressure. The inference concern is that for a mentally depressed patient, 
information about low thyroid function would have (negative) impact upon the belief of 
AIDS diagnosis. (See [Pe00] for details). The degree of impact partially depends on the 
correlation between AIDS and mental depression, and it can be tested with available data. 
On the other hand, knowing the state of mental depression would block the impact of 
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blood pressure knowledge. Table 6 is an illegal drug abuse database. Data from Table 6 
shows the frequency with which an illegal drug user either takes intravenous injections or 
smokes. The data indicates a drug injector is likely to have hepatitis. The relationship 
between AIDS and drug abuse is not given in Table 6. However, for a drug taker, an 
intravenous injection is unfortunately often a form of blood transfusion; one can infer that 
an illegal drug user is often also an AIDS patient. 
 
 
Table 4: NHL cancer database (the 2nd database) N: NHL Cancer; A: AIDS 
Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
N N N Y Y N Y N Y Y N Y N N Y N N N Y N 
A N N Y Y N N N Y Y N Y N N Y N N N Y N 
 
Table 5: thyroid database (the 3rd database) P: blood pressure; D: depression; Y: low 
thyroid 
Key 1 2 3 6 7 21 9 22 11 23 13 14 15 24 17 25 19 20 
P N Y Y Y N N N N N Y Y N Y Y N N Y Y 
D N Y Y N N Y Y Y Y Y N Y Y Y Y N Y N 
Y N Y N N N Y N Y N Y N Y Y N Y N Y N 
 
Table 6: drug abuse database (the 4th database) I: intravenous injection; S: smoke; H: 
hepatitis 
Key 1 23 2 3 26 6 27 8 10 28 25 12 13 29 30 31 17 18 19 20 
I N Y N Y Y N Y Y N Y Y N N Y Y Y N Y N Y 
S Y N Y Y Y Y Y Y Y N Y Y Y Y Y N Y Y Y N 
H N Y Y Y Y N Y Y N Y Y Y N Y Y Y N Y N Y 
 
(These databases all contain different set of attributes. However, they all have at least one attribute, a key, in common. 
There is some overlap in the objects they describe. Overlap occurs in this example when objects in multiple databases 
have the same key.  These three databases, in combination with the sample medical records database (Table 1) 
represent possible components of the type of distributed database system that we are addressing.  We focus here on 
databases that deal with only one class of objects – subjects of a medical study.  However, we believe that our approach 
may be generalized to apply to databases that deal with multiple classes of objects.) 

 
C. The Rational Downgrader 
Building Bayesian belief nets and other conceptual models can identify areas in which 
there is a potential for inference.  Additional steps, however, are required, in order to 
actually prevent inference from occurring.  We refer to such measures as “parsimonious 
downgrading.”  In other words, we revisit our initial downgrading decisions and adjust 
them to lessen inference. They generally involve obscuring (by downgrading less than we 
planned on) certain attributes in records presented to a Low user in order to prevent it 
from inferring the values of attributes labeled High in the database.  There are a number 
of factors that complicate the downgrading process.  One is that the number of attributes 
that need to be obscured for any given record depends on the values of the record’s 
attributes.  Therefore, the actions taken in downgrading are not uniform across all of a 
Low user’s query possibilities.  Another factor that complicates downgrading is that an 
overly aggressive downgrading strategy can render the responses to the Low user’s 
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queries useless.  Chang and Moskowitz [MC99] developed (in theory) the Rational 
Downgrader in order to address these difficulties.  The Rational Downgrader is a system 
that is capable of downgrading a database in an “ intelligent”  manner.  It incorporates 
metrics that enable it to quantify both the reduction in usefulness and the level of 
inference with respect to High data that results from the obscuring of various attributes in 
the records available to Low.  Using these metrics it is able to conduct a directed search 
of attribute values to be hidden (referred to here as downgrading strategies) and select 
one that maximizes usefulness while at the same time minimizes the possibility of 
inferring High data.  The outputs of the Rational Downgrader are records that have been 
modified in order to obscure certain attributes, as in the table below. 
 
Table 7: modified sample medical records H: hepatitis; D: depression; A: AIDS; T: 
transfusion 
Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

H N Y ? Y N N Y Y Y N N Y N Y N Y N Y N Y 
D N Y Y ? Y N N N Y N Y N N Y Y N Y Y Y N 
A - - - - - - - - - - - - - - - - - - - - 
T N N ? N N N N ? N N Y N N N N N N Y N Y 
 
As discussed before, the dashes represent information that we do not want to release to 
Low.  The “?”s represents additional data that is not released to low in order to lessen 
inference. 
 
I I I .  THE AGENT-BASED APPROACH TO IMPLEMENTATION 
 
A. Overall Architecture 
The introduction of the Rational Downgrader into a distributed database application 
raises several implementation issues.  The first issue is that the computation of a 
downgrading strategy performed by the Rational Downgrader is very complex.  
Performing this computation for every query to the database would cause an unacceptable 
increase in the database application’s response time.  Another issue is that the Rational 
Downgrader could represent a single point of failure and communication bottleneck that 
would undermine the main advantages of distribution.  A third implementation issue is 
that distributed database applications often involve heterogeneous database management 
systems.  Incorporating the functionality of the Rational Downgrader into each database 
management system would greatly complicate the development of the Rational 
Downgrader and the maintenance of the database management systems. 
 
In order to address these issues, we have developed a set of requirements for the 
architecture of the Rational Downgrader mechanism.  
 

1. The architecture must allow downgrading strategies to be computed infrequently 
and reused.   

2. The architecture must enable the execution of downgrading strategies to be 
distributed in the same manner as the storage of data.   
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3. The architecture must be cleanly separated from each of the database management 
systems and be based on a standard communication protocol.   

 
An agent-based architecture meets these requirements (for a similar use of agents see 
[TAPPCKD02] and [GCKPR01]). In this context, we use the term “agent-based” to 
describe a scheme in which the execution of a downgrading strategy is distinguished 
from its creation and is delegated to a number of independent processes.  Such an 
architecture allows downgrading strategies to be encapsulated in the form of inference 
prevention agents.  Because the agents are then   capable of carrying out the strategies 
themselves, for as long as they are valid, they eliminate the need for recomputing 
downgrading strategies upon every access request.  In addition, the autonomous nature of 
the agents allows them to be deployed in an environment that is separate from the one in 
which they were created.  The agents can be deployed on the same machines as the 
databases that they filter, so that a single point of failure and communication bottleneck is 
avoided.  Finally, because the agents have an implementation that is completely unaware 
of the details of any database management system, the difficulty of development and 
maintenance would not drastically increase when they were applied to a heterogeneous 
distributed database application.  Below is a visual representation of the proposed 
architecture. 
 
Figure 3: Architecture of Agent-based Rational Downgrader 

 
 
B. Design of the Inference Prevention Agent 
The inference prevention agent will be a production system [WC96] that is associated 
with a particular database in the distributed database application. The facts in the agent’s 
production system are the records in the database.  The rules are generated by the Rule 
Generator, which will be described in detail later.  The rules check for certain 

Rule 
Generator 

Agent 1 

DBMS 1 

Agent 2 Agent k 

DBMS 2 DBMS K 

… 
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combinations of values in attributes and specify attributes that should be hidden.  An 
example of a possible rule is provided below. 
 
RULE 1: IF H = ‘ y’  AND T = ‘ y’  THEN HIDE H 
 
Suppose that we have an agent that contains RULE 1, and a Low user species the query: 
 
SELECT H, T FROM TABLE_1 WHERE KEY = 3 
 
The agent first must retrieve the facts it needs from the database management system in 
order to apply its rules.  Rules may apply to any of the attributes in the database, so the 
agent must expand the user’s query to include all attributes.  The agent would then make 
the following SQL query to the local database management engine: 
 
SELECT *  FROM TABLE_1 WHERE KEY = 3 
 
The database management engine’s response to this query consists of the following 
record as shown in Table 8: 
 
Table 8: result of SELECT *  FROM TABLE_1 WHERE KEY = 3 H: hepatitis; T: 
transfusion 
 
Key 3 
H Y 
T Y 
A Y 
D Y 
 
 
The database management system’s response provides the agent with the facts its needs 
for its execution.  The agent will detect that the facts in this case match RULE 1 as 
specified above.  Accordingly, it will substitute ‘?’  for ‘ y’  in the attribute that specifies 
whether patient 3 has hepatitis or not.  Note that the downgrading was accomplished 
without any communication with any other databases, without any communication with 
the Rule Generator, and without any modification to the database management systems.  
 

C. Agent Communication 
Cases will arise when facts from the local database alone cannot be used to evaluate rules.  
Suppose that, for example, the rule in question were as follows: 
 
RULE 2: IF H = ‘ y’  AND T = ‘ y’  AND Y = ‘ y’  THEN HIDE H AND I 
 
Suppose also that Y (thyroid) data resided on a separate machine from the hepatitis 
information.  In order to handle such cases, agents will need to communicate with remote 
databases.  The nature of the agents’  communication may be illustrated with an example.  
Let us say that Agent A receives the query from the Low user: 
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SELECT H FROM TABLE_1 WHERE H = ‘ y’  
 
Clearly there is the possibility that RULE 2 may be activated.  As in the first example of 
rule evaluation, Agent A will make a broader query from its local database. 
 
SELECT *  FROM TABLE_1 WHERE H = ‘ y’  
 
Which would produce the result shown in Table 9: 
 
Table 9: result of SELECT *  FROM TABLE_1 WHERE H = ‘y’  (H: hepatitis; T: 
transfusion) 
 
Key 2 3 4 7 8 9 12 14 16 18 20 
H Y Y Y Y Y Y Y Y Y Y Y 
D Y Y Y N N Y N Y N Y N 
A N Y Y N Y Y N Y N Y N 
T N Y N N Y N N N N Y Y 
 
This query will provide Agent A with the hepatitis information and transfusion 
information, but not the depression information that it needs to evaluate the rule.  Thus 
Agent A needs to locate the database that can provide access to the depression 
information.  As part of the agent design, each agent will be given an attribute directory 
that specifies which databases contain which attributes.  The contents of this directory 
will be specified at rule generation time.  Accordingly, Agent A consults this directory 
and discovers that the database responsible for Y (thyroid) is TABLE_5.  Now Agent A 
needs to collect the thyroid attribute for all the records it shares with Table 5 that have ‘y’  
in the Y attribute, ‘ y’  in the H attribute, and ‘ y’  in the T attribute.  Unfortunately, while 
TABLE_5 may know the set of records for which Y = ‘ y’ , it does not know the set for 
which the other conditions hold, because its does not contain the hepatitis or transfusion 
information.  It should not send the entire set of records for which Y = ‘y’  because this 
may be prohibitively large.  Agent A needs to specify a subset of records to which 
TABLE_5 must apply its query of the thyroid attribute. In this case, that subset is all the 
records in Table 1 for which H=’y’  and T=’y’ .  Agent A can specify these records using 
the key that the local database and TABLE_5.  The SQL for such an operation in this 
example would be: 
 
SELECT Y FROM TABLE_5 WHERE Y = ‘ y’  AND (KEY = 3 OR KEY = 8 OR  
KEY = 18 OR KEY = 20) 
 
The result of this query is exactly the set of records to which Rule 2 applies. 
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Figure 5: The Design of an Individual Agent 

   
 
 
D. Design of the Rule Generator  
The Rule Generator executes far more infrequently than the agents.  Its purpose is to 
create new agents from time to time so that the inference prevention strategy may closely 
reflect the probability dependency relationships among the databases in the system.  In 
order to perform its task, it needs a comprehensive view of the entire distributed database 
system.  Such a view may be constructed by performing an outer join on the key that the 
databases share, as shown in Table 10.  
 
Table 10: complete High database (H: hepatitis; D: depression; A: AIDS; T: transfusion; 
I: intravenous injection; S: smoke; P: blood pressure; Y: low thyroid; N: NonHodgkins 
Lymphomas) 
K 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

H N Y Y Y N N Y Y Y N N Y N Y N Y N Y N Y * * Y * Y Y Y Y Y Y Y 
D N Y Y Y Y N N N Y N Y N N Y Y N Y Y Y N Y Y Y Y N * * * * * * 
A N N Y Y N N N Y Y N Y N N Y N N N Y N N * * * * * * * * * * * 
T N N Y N N N N Y N N Y N N N N N N Y N Y * * * * * * * * * * * 
I N N Y * * N * Y * N Y N N * * * N Y N Y * * Y * Y Y Y Y Y Y Y 
S Y Y Y * * Y * Y * Y N Y Y * * * Y Y Y N * * N * Y Y Y N Y Y N 
P N Y Y * * Y N * N * N * Y N Y * N * Y Y N Y Y Y N * * * * * * 
Y N Y N * * N N * N * N * N Y Y * Y * Y N Y N Y N N * * * * * * 
N N N Y Y N Y N Y Y N Y N N Y N N N Y N * * * * * * * * * * * * 
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Figure 6: The complete Bayesian Net 

 
Table 10 shows the combination of the original High data with records of illegal drug 
injection takers and records of the thyroid function, where the “* ”  denotes attribute 
values that are unknown because data records of these databases are not taken from a 
completely overlapped population. (Here, the assumption is that the database manager of 
the AIDS database is able to identify and select patients from the other two databases 
based on a common key.) The dependency relationship between attributes of the 
combined database is given by the Bayesian net of Figure 6. Note that Figure 6 has 
resulted from composing dependency relationships derived from these three databases, 
together with the knowledge about the relationship between intravenous injection and 
blood transfusion, and is not generated from combined data. It is known that the 
generation of a reliable complex network model in general demands large volumes of 
data. Here, we assume that the dependency relationship derived from each individual 
database is preserved in the combined database. For our current example, this assumption 
(referred to as dependency inheritance under combination) seems to be valid. It is useful 
in handling the combination of multiple large databases, yet its validity has not been 
formally proven. We shall investigate this issue in the future work.  
 
The outer join of the databases is used to train the Bayesian net.  Note that the rule 
generator does not retain the outer join it creates after the training is over.  Nor does it 
interact with the users.  It is not meant to be an operational substitute for the databases 
themselves.  As soon as the new agents are created, the resources devoted to storing the 
outer join it created may be reclaimed for other purposes.   
 
The rules are derived from the trained Bayesian net by analyzing the influence of an 
attribute on the sensitive target attribute.  There are many possible approaches to deriving 
filtering rules from a Bayesian net.  Our approach has been to use conditional probability 
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as a measure of the influence of an attribute, A, on a sensitive target attribute, T.  Where 
v and u denote values of attributes and Bn stands for the Bayesian net model in Figure 6, 
the probability that T = v given A=u is written as Prob(T=v|A=u, Bn).  We treat this 
value as a measure of the potential of inferring that A=u when T=v, given the Bayesian 
net structure Bn.  In the present medical example, the two attribute values that have the 
strongest influence on the positive diagnosis AIDS (A = ‘ y’ ) are NHL cancer positive 
(N=y) and blood transfusion positive (T=y), where the measures are 0.88 and 0.8, 
respectively.  In fact, attribute values that have greater influence usually arise from those 
attributes that are directly probabilistically related to AIDS.  In Figure 6, in descending 
order by degree of influence, they are T=y, I=y, H=y and D=y.  (Note that we exclude 
NHL cancer from our rule generation example because it has so a strong dependency 
relationship with the AIDS attribute that it obviously requires hiding at all times).  
Generally speaking, rules will include those attribute values with high influence measures 
relative to the rest of the attribute values. If we assume for the sake of simplicity that we 
consider only the four highest ranking attribute values, the Rule Generator will 
exhaustively evaluate the effect of hiding some of the four attribute values against the 
belief measure of AIDS being positive.  It then selects the combinations that cause the 
change of the belief of AIDS being positive beyond a given threshold.  For example, 
suppose the attribute values of interest are the four with highest influence measures, i.e., 
T=y, I=y, H=y and D=y. Let v1, v2, v3 and v4 denote the original values of T, I, H and D, 
respectively, and v1', v2', v3' and v4' are the modified values where a vi' can be either vi or 
'?'.1  In Figure 6, for a given inference prevention threshold τ, we compute  

α = | Prob(AIDS=y | T=v1, I=v2, H=v3, D=v4, Bn) 

-  Prob(AIDS=y | T=v1’ , I=v2’ , H=v3’ , D=v4’ , Bn) | 
 

and record those modifications where α > τ.  We then generate a set of inference 
prevention rules based on these modifications.  In the current example, one such rule 
could be: 
 
IF T=`y' AND I=`y' AND H = `y' AND D=’y’  THEN HIDE T AND I  
 
The search for the inference prevention rule sets is biased toward attribute values with 
higher influence measures. It is clear that the number of inference prevention rules is 
related to the value of the inference prevention threshold τ. Depending upon the level of 
security required in an application, τ can be lowered to ensure those security 
requirements. The reduction in inference that results from hiding T and I is significant 
enough that it is not necessary to also hide H and D. The set of rules with which the 
decision of an agent is made is a summary of the probabilistic information embedded in a 
probabilistic network.  The decision of the size of the set rules depends upon the 
precision required by applications.  In future work we would like to analyze the effect of 
the size of the inference prevention rule set on the achievable inference prevention 
threshold τ. The construction of a satisfactory Bayesian net in the medical domain is a 

                                                 
1 We do not consider   other values of the ith attribute other than its original value, vi, and the non-
informative value `?’  in this paper, because it is our  policy that we do not introduce erroneous data for the 
obvious pragmatic reasons. 
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knowledge intensive effort; its network model is relatively less likely to change.  Thus, 
the set of rules will not vary over short periods of time. 
 
In this example, the inference prevention rule is deterministic and hence, every arriving 
datum (or, a record) that satisfies the conditioning part of the rule is modified. However, 
as shown in [CW00], not all data that have the same attribute values are modified in the 
case of a centralized single database modification – modification stops when a threshold 
is achieved.  Suppose we do not make dynamic modifications to arriving data, but 
postpone modification for a period of time and then modify data collected over that 
period based on a centralized method (e.g., [CW00]). Would we make the same amount 
of modifications? We do not think it is likely. By using the deterministic inference 
prevention rules we may  over-modify  data. To reduce the amount of modifications, we 
are also investigating probabilistic inference prevention rules in which the probability of 
a rule is given by the frequency of occurrences of its conditioning part in the complete 
database. Probabilistic rules may give better database performance. 
 
It is worth pointing out that this scheme not only increases the security of confidential 
data from users, but also promotes compartmentalization within the distributed database 
system.  While the rule generator has access to High data in all of the databases, it never 
disseminates the data of one database to any other database in the system.  The only 
information transferred are rules that apply to Low data and the locations of Low 
attributes in the system.  None of this information makes any reference to High attributes.  
Although our paranoid worst case assumes otherwise, under usual circumstances it would 
be difficult for a given database administrator to find out the number, names, or 
probabilistic relationships of attributes in other databases. 
 
IV. CONCLUSION AND FUTURE WORK 
 
The conclusion of our analysis is that an agent-based tool is well suited to the problem of 
providing inference prevention capability in a distributed database system.  Our rationale 
for favoring the agent-based approach is summarized by the following list of advantages: 

1. Since the agents work in parallel and are local to the databases, the performance 
benefit of distribution is not lost.  There is no bottleneck through which all queries 
must pass. 

2. Similarly, the survivability benefit of distribution is not lost.  The potential single 
point of failure represented by a centralized Rational Downgrader is avoided. 

3. The compartmentalization provided by a distributed scheme is preserved.  
Databases can prevent the inference of sensitive data in other databases without 
knowing exactly what the nature of that data is. 

4. Interoperability is insured.  Heterogeneous databases can participate in the 
inference prevention effort as long as they are compliant with the SQL standard. 

5. A separation of concerns is maintained.  Changes to the inference prevention 
scheme do not require changes to the database management systems and vice 
versa. 

Some additional work may be required before our approach may be applied to 
operational systems.  In particular, we would like to verify the hypothesis of dependency 
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inheritance of Bayesian belief nets under combination, describe formally how our 
approach may be generalized to databases that describe more than one class of objects, 
and provide a more formal description of our algorithm for generating inference 
prevention rules from Bayesian belief nets. 
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